Part Number Hot Search : 
314008P PJQ5472A 127155MR PQ160 C1470 2SD16 25NF10 SMAJ58A
Product Description
Full Text Search
 

To Download V23990-P630-A44-P1-14 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p630-a44-pm preliminary datasheet flow 90pim 1 1200v/25a trench fieldstop technology igbt4 for low saturation loss supports design with 90 mounting angle between heatsink and pcb clip-in pcb mounting clip or screw on heatsink mounting industrial drives v23990-p630-a44 t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 27 t c =80c 37 t h =80c 33 t c =80c 49 maximum junction temperature t j max 150 c inverter transistor t h =80c 29 t c =80c 37 t h =80c 77 t c =80c 116 t sc t j 150c 10 s v cc v ge =15v 800 v 1200 vce 1200v, tj top max 75 20 w p tot power dissipation per diode a t j =t j max types i 2 t-value maximum ratings i fav a 2 s i fsm condition 300 a dc forward current surge forward current t j =45c t p =10ms t j =t j max 450 i 2 t features flow90pim 1 schematic input rectifier diode target applications maximum junction temperature short circuit ratings dc collector current turn off safe operating area collector-emitter break down voltage repetitive peak collector current power dissipation per igbt gate-emitter peak voltage a v t j =t j max p tot a v ce i c 75 w v ge i cpulse t p limited by t j max a v t j =t j max c 175 t j max copyright vincotech 1 revision: 1
v23990-p630-a44-pm preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter fwd t h =80c 27 t c =80c 35 t h =80c 56 t c =80c 84 brake transistor t h =80c 20 t c =80c 26 t h =80c 61 t c =80c 92 t sc t j 150c 10 s v cc v ge =15v 800 v brake fwd t h =80c 20 t c =80c 20 t h =80c 49 t c =80c 75 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 175 t j =25c 1200 20 50 comparative tracking index insulation voltage creepage distance operation temperature under switching condition clearance -40?+(tjmax - 25) c storage temperature t stg -40?+125 c t op peak repetitive reverse voltage w a a t p limited by t j max maximum junction temperature t j max 175 t j =t j max t p limited by t j max dc forward current c repetitive peak forward current power dissipation per diode v ce i cpuls i c v ge t j =25c power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current i frm v rrm v 1200 maximum junction temperature peak repetitive reverse voltage turn off safe operating area dc collector current power dissipation per igbt collector-emitter break down voltage repetitive peak collector current a p tot 1200 v ce 1200v, t j t op max v c 20 gate-emitter peak voltage maximum junction temperature short circuit ratings t j max a 45 a 45 i frm p tot i f v rrm t j max t j =t j max a v w a c v 175 w t p limited by t j max t j =t j max t j =t j max copyright vincotech 2 revision: 1
v23990-p630-a44-pm preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 0,8 1,20 1,5 t j =125c 1,17 t j =25c 0,92 t j =125c 0,81 t j =25c 11 t j =125c 14 t j =25c 0,01 t j =125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,14 k/w t j =25c 5 5,8 6,5 t j =150c t j =25c 1,6 1,96 2,1 t j =150c 2,30 t j =25c 0,0024 t j =150c t j =25c 120 t j =150c t j =25c 127 t j =150c 130 t j =25c 45 t j =150c 46 t j =25c 240 t j =150c 318 t j =25c 68 t j =150c 136 t j =25c 2,61 t j =150c 3,77 t j =25c 1,42 t j =150c 2,45 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,24 k/w t j =25c 1,35 1,86 2,05 t j =150c 1,81 t j =25c 12 t j =150c 16 t j =25c 345 t j =150c 564 t j =25c 2,18 t j =150c 4,68 di ( rec ) max t j =25c 40 /d t t j =150c 36 t j =25c 0,77 t j =150c 1,74 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,71 k/w tj=25c tj=25c v ma ? v 115 nc ns na mws ns pf v 85 115 1430 none 0,00085 25 600 600 25 960 25 collector-emitter cut-off current incl. diode collector-emitter saturation voltage rgoff=32 ? rise time gate-emitter leakage current gate emitter threshold voltage 0 15 15 reverse recovered energy peak rate of fall of recovery current reverse recovered charge inverter fwd peak reverse recovery current 1200 25 a mws c a/ s v v m ? ma 30 30 30 v f v to r t characteristic values forward voltage threshold voltage (for power loss calc. only) input rectifier diode slope resistance (for power loss calc. only) reverse current i r 1600 value conditions output capacitance turn-off energy loss per pulse inverter transistor fall time turn-off delay time turn-on delay time c oss t f c ies v f e on e off turn-on energy loss per pulse reverse transfer capacitance diode forward voltage gate charge input capacitance reverse recovery time i rrm t rr integrated gate resistor c rss q rr q gate i ges t d(off) r gint t r v ce =v ge v ge(th) v ce(sat) i ces t d(on) erec f=1mhz rgon=32 ? rgon=32 ? 0 15 20 15 0 25 25 copyright vincotech 3 revision: 1
v23990-p630-a44-pm preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value conditions t j =25c 5 5,8 6,5 t j =150c t j =25c 1,6 1,89 2,1 t j =150c 2,28 t j =25c 0,002 t j =150c t j =25c 120 t j =150c none t j =25c 93 t j =150c 97 t j =25c 37 t j =150c 38 t j =25c 199 t j =150c 267 t j =25c 80 t j =150c 131 t j =25c 1,05 t j =150c 1,49 t j =25c 0,86 t j =150c 1,44 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,56 k/w t j =25c 1,35 1,87 2,05 t j =150c 1,79 t j =25c 2,7 t j =150c t j =25c 8 t j =150c 11 t j =25c 317 t j =150c 550 t j =25c 1,20 t j =150c 1,20 di ( rec ) max t j =25c 51 /d t t j =150c 39 t j =25c 0,49 t j =150c 1,08 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,92 k/w 80 900 tc=25c tc=100c tj=25c 1200 1200 600 25 600 15 10 15 thermistor brake fwd reverse recovery energy t rr q rr e rec v f i r i rrm 15 rgon=32 ? peak reverse recovery current reverse recovered charge diode forward voltage reverse leakage current reverse recovery time peak rate of fall of recovery current 25 20 ns pf 15 na 0 15 0 v rgon=32 ? rgoff=32 ? v ce =v ge f=1mhz e on t f c oss i ces i ges 0 15 15 960 r/r r100=1486 ? rated resistance r power dissipation constant deviation of r100 mw/k power dissipation p mw tj=25c nc r gint gate-emitter leakage current integrated gate resistor brake transistor collector-emitter saturation voltage v ge(th) v ce(sat) e off turn-on energy loss per pulse turn-off energy loss per pulse rise time gate charge input capacitance q gate reverse transfer capacitance output capacitance c rss c ies fall time t d(on) t r turn-off delay time t d(off) turn-on delay time collector-emitter cut-off incl diode gate emitter threshold voltage 0,00043 92 tj=25c 55 tj=25c 2 200 5 -5 % ? 22000 mws c v ns a/ s a a ? v mws ma k b (25/100) tj=25c 3996 k b-value tol. 3% 3950 tj=25c b-value b (25/50) tol. 3% vincotech ntc reference b copyright vincotech 4 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 output inverter igbt figure 4 output inverter fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 10 20 30 40 50 60 70 80 012345 v ce (v) i c (a) 0 5 10 15 20 25 024681012 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0,0 0,5 1,0 1,5 2,0 2,5 3,0 v f (v) i f (a) t j = 25c t j = t j ma x -25c 0 10 20 30 40 50 60 70 80 012345 v ce (v) i c (a) copyright vincotech 5 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 25 a r goff = 32 ? figure 7 output inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 25 a output inverter e on high t e off high t e on low t e off low t 0 2 4 6 8 10 12 0 1 02 03 04 05 0 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 2 4 6 8 10 0 40 80 120 160 r g ( ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,0 0,5 1,0 1,5 2,0 2,5 0 1020304050 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,0 0,5 1,0 1,5 2,0 2,5 0 30 60 90 120 150 r g ( ) e (mws) copyright vincotech 6 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 25 a r goff = 32 ? figure 11 output inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 32 ? v ge = 15 v output inverter t doff t f t don t r 0,00 0,01 0,10 1,00 0 1020304050 i c (a) t ( s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0,2 0,4 0,6 0,8 1,0 0 30 60 90 120 150 r gon ( ) t rr ( s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 30 60 90 120 150 r g ( ) t ( s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0,2 0,4 0,6 0,8 1,0 0 1020304050 i c (a) t rr ( s) copyright vincotech 7 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 32 ? v ge = 15 v figure 15 output inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 32 ? v ge = 15 v output inverter i rrm t j = t jmax - 25c i rrm t j = 25c 0 5 10 15 20 25 30 0 30 60 90 120 150 r gon ( ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1 2 3 4 5 6 0 30 60 90 120 150 r gon ( ) q rr ( c) t j = t jmax -25c i rrm t j = 25c i rrm 0 4 8 12 16 20 0 1020304050 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1 2 3 4 5 6 0 1020304050 i c (a) q rr ( c) copyright vincotech 8 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c )d i 0 /dt,di rec /dt = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 32 ? v ge = 15 v figure 19 output inverter igbt figure 20 output inverter fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1,24 k/w rthjh = 1,01 r thjh = 1,71 k/w rthjh = 1,39 igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,09 2,4e+00 0,07 2,0e+00 0,03 6,7e+00 0,03 5,5e+00 0,17 4,2e-01 0,14 3,4e-01 0,11 1,0e+00 0,09 8,3e-01 0,66 1,1e-01 0,53 8,8e-02 0,36 1,7e-01 0,29 1,4e-01 0,24 2,6e-02 0,20 2,1e-02 0,87 5,6e-02 0,70 4,6e-02 0,08 4,3e-03 0,07 3,5e-03 0,24 1,1e-02 0,19 9,2e-03 0,10 2,3e-03 0,08 1,8e-03 output inverter thermal grease phase change interface thermal grease phase change interface 0 400 800 1200 1600 2000 2400 0 30 60 90 120 150 r gon ( ) di rec / dt (a/ s) di 0 /dt di rec /dt 0 150 300 450 600 750 0 1020304050 i c (a) di rec / dt (a/ s) di rec /dt di 0 /dt t op (s t z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 9 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 output inverter fwd figure 24 output inverter fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 25 50 75 100 125 150 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q ge ) at at d = single pulse i c = 25 a t h = 80 oc v ge = 15 v t j =t jmax oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100u s 1ms 10m s 100ms d c 10 0 10 3 0 2 4 6 8 10 12 14 16 0 25 50 75 100 125 q g (nc) v ge (v) 240v 960v copyright vincotech 11 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 27 output inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge )v ge = f(q ge ) at at v ce = 1200 v v ce 1200 v t j 175 oc t j = 175 oc figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j =t jmax -25 oc u ccminus =u ccplus switching mode : 3phase spwm 0 10 20 30 40 50 10 12 14 16 18 20 v ge (v) t sc ( s) 0 20 40 60 80 100 120 140 160 180 200 10 12 14 16 18 v ge (v) i c(sc) 0 10 20 30 40 50 60 70 0 200 400 600 800 1000 1200 1400 v ce (v) i c (a) i c ma x v ce max i c module i c chip copyright vincotech 12 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 1 brake igbt figure 2 brake igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 brake igbt figure 4 brake fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 10 20 30 40 50 0123456 v ce (v) i c (a) 0 3 6 9 12 15 18 024681012 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 35 01234 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0123456 v ce (v) i c (a) copyright vincotech 13 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 5 brake igbt figure 6 brake igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 15 a r goff = 32 ? figure 7 brake fwd figure 8 brake fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 15 a brake e rec t j = t jmax - 25c t j = 25c e rec 0 0,3 0,6 0,9 1,2 1,5 0 5 10 15 20 25 30 i c (a) e (mws) e rec t j = t jmax -25c t j = 25c e rec 0 0,3 0,6 0,9 1,2 1,5 0 30 60 90 120 150 r g ( ) e (mws) e off t j = t jmax -25c e on e off 0 1 2 3 4 0 5 10 15 20 25 30 i c (a) e (mws) e on t j =25c e on e on t j = 25c e off 0 1 2 3 4 0 30 60 90 120 150 r g ( ) e (mws) t j =t jmax -25c copyright vincotech 14 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 9 brake igbt figure 10 brake igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 15 a r goff = 32 ? figure 11 brake igbt figure 12 brake fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 1,56 k/w r thjh = 1,26 k/w r thjh = 1,92 k/w r thjh = 1,56 k/w thermal grease phase change interface thermal grease phase change interface brake t doff t f t don t r 0,00 0,01 0,10 1,00 0 5 10 15 20 25 30 i c (a) t ( s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 30 60 90 120 150 r g ( ) t ( s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 15 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 13 brake igbt figure 14 brake igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 brake fwd figure 16 brake fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 sd = t p / t r thjh = 2,14 k/w figure 3 rectifier diode figure 4 rectifier diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 20 40 60 80 100 0,0 0,5 1,0 1,5 2,0 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 17 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/ ? copyright vincotech 18 revision: 1
v23990-p630-a44-pm preliminary datasheet t j 150 c r g on 32 ? r goff 32 ? figure 1 output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of tdon, t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 25 a i c (100%) = 25 a t doff = 0,32 s t don = 0,13 s t eoff = 0,74 s t eon = 0,51 s figure 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 25 a i c (100%) = 25 a t f = 0,14 s t r = 0,05 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -20 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % t doff t eoff v ce i c v ge i c 10% v ge10% t don v ce 3% -50 0 50 100 150 200 3,8 4 4,2 4,4 4,6 time(us) % i c v ce t eon v ge fitted i c 10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 -0,1 0,1 0,3 0,5 0,7 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 100 150 200 4 4,1 4,2 4,3 4,4 4,5 time(us) % t r v ce i c copyright vincotech 19 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 14,93 kw p on (100%) = 14,93 kw e off (100%) = 2,45 mj e on (100%) = 3,77 mj t eoff = 0,74 s t eon = 0,51 s figure 7 output inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = -15 v v d (100%) = 600 v v geon = 15 v i d (100%) = 25 a v c (100%) = 600 v i rrm (100%) = -16 a i c (100%) = 25 a t rr = 0,56 s q g = 173,95 nc switching definitions output inverter i c 1% v ge 90% -20 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff v ce 3% v ge 10% -50 0 50 100 150 200 3,8 4 4,2 4,4 4,6 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -50 0 50 100 150 200 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -120 -80 -40 0 40 80 120 4 4,2 4,4 4,6 4,8 5 time(us) % v d fitted i d copyright vincotech 20 revision: 1
v23990-p630-a44-pm preliminary datasheet figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 25 a p rec (100%) = 14,93 kw q rr (100%) = 4,68 c e rec (100%) = 1,74 mj t qrr = 1,17 s t erec = 1,17 s switching definitions output inverter t qrr -150 -100 -50 0 50 100 150 4 4,4 4,8 5,2 5,6 % i d q rr time ( us ) -20 0 20 40 60 80 100 120 3,8 4,2 4,6 5,0 5,4 time(us) % p rec e rec t erec copyright vincotech 21 revision: 1
v23990-p630-a44-pm preliminary datasheet version ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housing v23990-p630-a44 p630-a44 p630-a44 outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 22 revision: 1
v23990-p630-a44-pm preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. target preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. copyright vincotech 23 revision: 1


▲Up To Search▲   

 
Price & Availability of V23990-P630-A44-P1-14

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X